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Abstract - -When applied to homogeneous rocks, the statistical technique of autocorrelation helps in visualizing 
the preferential alignment of mineral barycenters. We examine the behaviour of each element within a regular 
lattice deformed in either simple or pure shear. Preferential directions immediately appear depending upon the 
relative orientation of the shear or flattening plane with respect to the lattice. Autocorrelation amplifies these 
directions (either one direction with a high intensity signal or two directions with weak intensity signals). They 
depend on the geometrical shape of the elementary mesh of the lattice which is changing during the deformation. 
From the autocorrelated diagram, geometrical parameters of the elementary mesh can be estimated. Resulting 
from the numerical simulations, graphs are constructed which provide strain estimates in the case of simple shear. 
Application to natural rocks deformation is given in the case of simple-sheared peridotites. 

INTRODUCTION 

VARIOUS methods are available for estimating strain in 
deformed rocks. Most of them require the existence of 
continuously deforming finite markers distributed over 
the whole field to be analysed. In sedimentary or low- 
grade metamorphic rocks this condition may be satisfied 
by pebbles, reduction spots or deformed fossils. In 
igneous rocks, strain patterns can be estimated only in a 
few cases, using sophisticated physical methods such as 
magnetic susceptibility anisotropy or X-ray texture 

analysis. For instance, in peridotites, only qualitative 
strain estimates have been made so far (Nicolas & 
Poirier 1976). 

Our starting assumption is that, in deformed rocks, a 
strain sensitive pattern exists in the crystal distribution, 
which is difficult to discern. In the most favourable 
cases, clustering of barycentres from each crystal within 
a lattice or within an aggregate immediately appear as a 
result of the deformation (Fig. 1). Therefore signal-pro- 
cessing techniques (Robinson 1962, Agterberg 1974, 
Kulhanek 1976) are used to extract the signal (the bulk 

~3 

Fig. 1. Hexagonal lattice deformation. Linear clusters depend upon the angle between the stacking plane and the shearing 
plane. They rotate according to Ramsay's equations (1967) with increasing strain. Autocorrelation would amplify those 
clusters. In the case of 1 and 3 one direction rotates according to the shear deformation; in case 2 two directions are present 

with less defined characters. 

* Presented at the International Workshop Strain Patterns in Rocks 
at Rennes, 13-14 May 1982. 
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Fig. 2. Method for obtaining an autocorrelation diagram in binary-points representation.  The method consists of  translating 
the origin at each successive point and plotting the remaining points. 

strain) from the surrounding noise. A signal is defined as 
any elected trace of what is considered to be representa- 
tive of the process under analysis. In deformed perido- 
tites, we have considered (Misseri & Vigneresse 1982) 
spinel grain distribution as the output signal of a strain 
acting on the whole rock. In the present paper, we 
generalize this concept considering that the pattern 
given by the distribution of each grain barycentre in the 
rock still records the strain history of the rocks. 

Signal-processing techniques commonly use statistics 
and/or transformation from the usual time or spatial 
domains to the frequency domain (Robinson 1962). The 
present problem is to amplify a signal in order to perceive 
it, since the signal-to-noise ratio is low and filtering 
techniques are not helpful; one possibility is to increase 
the order of statistics which describes the phenomenon 
since perception studies have demonstrated that human 
vision is most aware of second-order statistics (Julesz 
1962). For instance when data present similar first-order 
parameters (arithmetic means as an example) then, by 
examining their second-order parameters (variances), 
small variations within the sample blow up. Those sec- 
ond-order statistical techniques incorporate quadratic 
functions of the signal components. Correlation is such a 
process. 

METHOD 

Amongst the correlation techniques, autocorrelation 
and crosscorrelation are the most usual. Crosscorrela- 
tion measures the degree of similarity between two 
functions, whereas autocorrelation is the measure of the 
similarity of a signal with itself when shifted along the 
sampling interval. If each value of the function at a 
sampling point is taken as a component of the signal, 
vector notation may be applied to the signal. Mathemat- 
ical formulation of the autocorrelation is then (Agter- 
berg 1974): 

t l  

a i = S ~ o r  a = s ' s ,  s / ' s /+ i  
/=i 

where ai is the ith component of the autocorrelated 
signal, with shift i, and s/ is the ]th component of the 
signal. 

The autocorrelation process is highly simplified when 

dealing with a distribution of points. Here the function 
under analysis is represented by binary data: (0 for 
absence and 1 for presence of the point). In such a case, 
computing the autocorrelated diagram results in taking 
one point as the origin of a new coordinates system and 
plotting the remaining points into this system (see Fig. 2 
in the case of a natural rock sample). Such methods have 
been previously described (Barbier & Leymarie 1972, 
Brun 1980). Applications to deformation are described 
in Fry (1979), Hanna & Fry (1979) and Ribeiro et al. 

(1983). 
In the above mentioned papers, a point distribution is 

mainly used for estimating the strain components acting 
on a finite marker of non-nul area (i.e. the area of which 
is non-negligible with respect to the size of the sample). 
The idea is to use the relative distribution of markers to 
determine the average strain. The distribution may be 
pseudo-random or resulting from a double Poisson pro- 
cess (Ribeiro et al. 1983), since the markers are of finite 
area and thus imply no mutual overlapping. So the 
results of autocorrelation may differ, depending on the 
kind of point distribution. 

SIMULATION OF THE DEFORMATION 
OF A LATTICE 

A homogeneous finite deformation acting upon a 
given lattice can be simulated by numerical and geomet- 
rical means. Numerical simulation of the deformation is 
done through computing techniques described in 
Appendix. Incremental deformation is performed with 
a fixed shearing direction. The influence of the angle 
between the packing frame and the shear direction is 
also examined by rotating the initial lattice orientation. 
A triangular lattice has been chosen for the computation 
since it can be viewed as the most general case and can be 
referred to from any other lattice system. Clustering of 
barycentres in a regular lattice may occur in some favor- 
able case only through geometrical simulation of the 
deformation (Fig. 1). In order to reinforce the image, 
the deformed states of a regular lattice are autocorre- 
lated and the resulting computed function is plotted 
(Fig. 3). 

A periodical character of the autocorrelated signal is 
found when the initial signal is periodic. Autocorrelation 
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Fig. 3. Evolution of a triangular (hexagonal compact) lattice during simple shear; the cell and the elementary triangular 
mesh are outlined• Autocorrelation diagrams of the deformed lattice are presented• Note the change from (a) nodal 
character (y = 0.) to (b) one well defined linear cluster (y = 1.25) and (c) two less defined linear clusters (y = 2.5). The 
basic triangular cell is presented at different stages with the corresponding geometrical parameters• Due to plotter edge 

effects, an apparent loss of points occurs in the autocorrelation diagram on highly deformed cases• 

is a central symmetric process which, when applied to a 
signal, results in the combination and amplification of 
the various anterior symmetry properties of the signal. 
For instance, a regular lattice of nodes constructed from 
the intersection points of periodical lines gives an 
autocorrelation diagram of nodes with the same 
periodicity. In the case of a triangular lattice, cell edges 
are oriented with a triadic symmetry pattern, (plane of 
symmetry rotated 120°); then the resulting autocorrela- 
tion diagram presents first-order directions (least dis- 
tances between points in the cell) having the anterior 
symmetry pattern. It is therefore nodal in character with 
triadic pattern. In the case of linear periodic structures 
with different azimuthal frequencies, the major direc- 
tion to appear in the autocorrelated signal is the one for 
which the azimuthal frequency is the highest; that is, the 
direction along which the points are the closest to each 
other. In order to test numerous cases ranging from a 
regular lattice to a pseudo-lattice as in natural rocks, we 
use a triangular lattice in which we progressively allow 
points to depart from their theoretical mesh positions 
(Fig. 4a). 

The spatial distribution of the initial points is the 
underlying condition which determines the shape of the 
autocorrelation diagram. If we start from a perfect 
lattice of points, the resulting autocorrelation diagram is 
nodal in character since the initial signal is nodal 
(Fig. 4a). When a slight departure from the node posi- 
tion is allowed for the points within the initial lattice 
frame, then the autocorrelated diagram progressively 

loses its nodal character and turns to linear clusters 
(Fig. 4b). If further departure is allowed for the points, 
they may attain a random distribution thus producing an 
autocorrelation diagram with no definite cluster. This 
can be understood when reminded that the autocorrela- 
tion process is a convolution process and therefore 
implies intimate multiplication/convolution reciprocity 
between frequency and spatial domains. In the fre- 
quency domain, a periodic mesh is represented by Dirac 
impulsions with frequency depending upon the mesh 
parameters. If a slight departure is allowed for the 
points, the frequency representation of the impulsions 
widens towards a Gaussian distribution. When a random 
distribution of points is obtained, the frequency distribu- 
tion turns to a Poisson-like process which is flat in 
amplitude and incorporates infinite frequencies. Since 
convolution (autocorrelation also) is very sensitive to 
the data frequency distribution relative to sampling 
frequency (departure of the points with respect to their 
internodal distances), this explains why linear clusters 
were obtained in our case. 

RESULTS 

When a regular triangular lattice is processed we 
observe, after signal autocorrelation, the existence of 
linear clusters with preferred orientations. These linear 
clusters are induced by the lattice nature of the signal 
(Fig. 3a). This is a major-difference from the preceding 



324 M. MISSERI and J. L. VIGNERESSE 

(o) (b) 

. . . .  o ° 

• ° ° ° ° ° 

° • o o • 

• • ° ° • . 

. . . . .  ° . 

..... iiiilIill 
• • , pe  e I ee  L . 

" ® e e t ° t q ~ O ° l  ' e t 4 e B D e ~ v a P j .  ' 

o . . . o  . . . . ,  

i . t  . e "  . e - "  

.! dr. 4 . . . 4 .~  

• 4 4 .  , 1 , ' . 4~ ,  

• " " , ~qP . "g " .GP '~  

e .o °oGaoe~pn~  

• m • o • e .  I ~ . , ~ . - t p i  

• . o  e e l  eQee ,4~eA  

• • .  • o o e • g . q  , ,q - ,NO~ 

• * • . o • 

~q l . ~a , .  q.,, p .  ~ ~ o o o . .  

• .,r,.,~u.,, ~ l  o I o • a o ~ . .  

~ , dk . , I b .  e • j • e .  • • ,  

• , S m ~  P .  

~ @,,,~,t . . 0 , , . . I ~  r .  

• -T - . tP  4 "  I t "  . 

, . . r - - i t  , r ,  I -  

, .& ,  ,,o. a .  o 

• o . 

Fig. 4. Autocorrelation of a non-deformed (a) and a deformed (b) triangular lattice, in which the points slightly depart from 
their initial mesh position. Due to this departure, a change is observed from nodal to linear clustering of the autocorrelated 

points. 

point-to-point methods (Fry 1979, Hanna & Fry 1979, 
Ribeiro etal. 1983), in which the random initial distribu- 
tion of points results in a non-directional cluster within 
the autocorrelation diagram. During deformation of a 
regular lattice, the linear clusters rotate in orientation. 
For instance, in the simple-shear case, a cluster with 
orientation a with respect to the shear plane rotates to an 
angle a '  in the deformed state. Relationship between 
the undeformed and the deformed directions of a given 
marker follows Ramsay's  (1967) equation in the simple 
shear case 

cot a = cot a '  + y with 7 the usual shear strain. 

In the case of moderate shear, the more drastic 
changes occur for directions located within 45 ° to the 
perpendicular to the shear plane. 

Orientation and number o f  linear clusters 

We found that the orientation of the linear cluster is 
basically dependent upon the spacing between two 
nodes in the lattice. In the elementary triangular mesh, 
the preferred direction of the linear cluster is the one 
derived from the direction along which points are the 
closest within the elementary starting triangle. We 
observe two major cases. 

(a) A Single well-defined direction o f  cluster. This 
corresponds (Fig. 3b) to the case in which the elemen- 
tary triangle, after deformation, is reduced to an isos- 
celes triangle in which one side (a) is much shorter than 
the other sides (b and c). In that case the sharpest cluster 
is encountered for b/c = 1 and a/b = a/c ~ 1. 

For strain determination, the three necessary 
parameters are/3 (angle between the perpendicular to 

the foliation and the side a which is parallel to the cluster 
direction) and the values a and h (the height of the 
deformed triangle which is also the value of the shortest 
side in the triangle periodicity of the linear cluster). 

(b) Two poorly-defined linear clusters. In such a case 
(Fig. 3c), the signal corresponds to an irregular triangle 
in which two sides are nearly equal but both are much 
shorter than the remaining side (2a/c = 1 and a/b = 
c/b ~ 1). Two linear clusters are encountered, each one 
oriented with respect to the shear plane with angles 131 
and/32 equal to the angle of both adjacent sides of the 
triangle with the perpendicular to the foliation plane. 
Then four parameters are needed for the interpretation. 
They are: the angles/31 and f12, and the short sides a and 
c of the triangle. 

When computing the parameters of a deformed 
elementary triangular mesh within a triangular lattice as 
a function of the strain, variations of the above quoted 
parameters in either distance and orientation are 
observed (cf. Appendix). Since the shortest side in the 
deformed triangle may vary in orientation with respect 
to the strain components,  the linear clusters resulting 
from autocorrelation follow a law identical to that of the 
variations of the length of the sides during deformation. 
When starting from a regular triangular lattice, one well- 
defined cluster in the autocorrelated diagram appears. 
Its orientation is that of the shortest side within the 
triangular mesh which roughly corresponds to the orien- 
tation of the side of the triangle lying within a small 
sector relative to the shortening azimuth. The rotation 
of the short side in the triangle may precede the rotation 
of the shortening azimuth; as soon as the short side 
enters into the elongation sector, it quickly increases in 
size. At this point, it may be large enough to become the 
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Fig. 5. Templates displaying which orientation the well defined linear cluster presents depending upon the cell orientation 
13 and the strain rate of simple shear. The initial lattice possesses an equilateral triangular cell in this case. 
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Fig. 6. Partial template for two less-defined linear clusters. Strain may be estimated if one knows the respective angles of the 
two clusters (/~, 132) with respect to the foliation plane. In this case, the initial lattice is an equilateral triangular. 

second side in length within the triangle. As a result, 
drastic change occurs in the autocorrelat ion diagram 
evolving from a single linear cluster to two less defined 
clusters (Figs. 3b & c). 

Starting f rom an initially equilateral cell, two types of  
theoretical  templates  are obta ined depicting the possible 
range of clusters in the autocorrelat ion diagram as a 
function of the amount  of strain. They depend on the 
kind of linear clusters observed during the autocorrela-  
tion process. In the first case (Fig. 5) only one well- 
defined direction is observed.  In this case, however ,  
determining the angle between the perpendicular  to the 
foliation ($1) and the linear cluster is not sufficient to 
fully determine the strain and the shear nature,  since the 
resulting angle /3 strongly depends upon the starting 
orientat ion of the marker .  In the case of  two weakly 
defined linear clusters, the values of  both angles/31 and 
132 of the linear clusters with the perpendicular  to S1 
plane theoretically fully determine the system, since two 

trajectories of curves in the templa te  (Fig. 6) are used. 
We do not present  in Fig. 6 a full templa te  for the case of 
two weak intensity clusters because there are too numer-  
ous cases to be taken into account. Fur thermore ,  the 
angle of the packing f rame with the shear direction 
complicates the interpretat ion.  For  these reasons,  this 
case will not be described. 

SIMULATION OF THE DEFORMATION 
OF A NON-REGULAR L A T T I C E  

Geometr ica l  deformat ion  of various basic e lementary  
triangles has been numerically simulated (cf. Appendix)  
to obtain deformat ion est imates f rom the autocorrela-  
tion diagram. The starting material  consists of tr iangular 
e lementary  meshes of different shapes on which geomet-  
rical deformat ion is applied. Simple shear has been 
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Fig. 7. (a) Curve displaying the computed  values of  a/h vs 3' when simulat ing the pure shear  deformat ion  of a 
pseudo-equi lateral  triangle. The  solid line is the mean  curve for the whole data  set, the envelope given by the dot ted lines. 
(b) Values and envelope as in (a) but as a graph ofa/h vs O = t an - ly .  

considered. The length and orientation of each side of  
the triangle which determine the autocorrelat ion clusters 
are computed as a function of progressive strain value. 
Results are identical to the case of a regular lattice, 
displaying linear clusters; however,  the cluster character  
is more diffuse. 

In order  to avoid the ambiguity encountered in the 
case of a single linear cluster, a synthetic graph display- 
ing the variations of combined parameters  as a function 
of strain has been plotted (Fig. 7) from the geometrical. 
parameters  of a deformed triangle. The starting cell is 
equilateral to simulate a triangular lattice. Next,  each 
summit is allowed to depart  by up to 20% from its 
equilateral coordinates in a periodic lattice. This simu- 
lates a triangular pseudo lattice. This range of departure  
allows us to take into account most natural textures,  
provided no pronounced anisot ropy or heterogenei ty 
exists. The influence of the orientation of the packing 
plane with respect to the shear direction is also examined 
through incremental rotations of 10 °. The total finite 
deformation is applied to the triangles by increments of 
y = 0.25 in the case of a simple shear. During the 
simulation we consider the length of the sides of the 
triangle, their orientation relative to the shear plane, 
and the ratio of one side to each other;  the height (h) of 
the tr iangle perpendicular to the shortest side is also 
computed.  Tests are made to keep only the relevant 
deformed triangles which produce one well d e f i n e d  
linear cluster (one side much shorter  than the two adja- 

cent other  ones when the triangle is nearly isosceles) or 
two weak clusters (two adjacent sides nearly equal, the 
third side being much larger). The resulting list is impre- 
ssi.ve in volume (more than 5000 results). A second test 
consists in eliminating an abundant  redundancy in the 
results, mainly due to a systematic rotation of the initial 
triangle through 10 increments over a 180 ° range. The 
resulting list, is then more tractable. The computed 
values of a/h for which an autocorrelat ion diagram with 
one well defined cluster is obtained are plotted as a 
function of y. Results are shown in Fig. 7. As a function 
of the increasing amount  of strain, the ratio a/h progres- 
sively decreases. Results are far more impressive when 
plotting the ratio a/h as a function of the angle 0 = 
tan -~ y (Fig. 7). A linearly dependent  curve may be 
fitted to the data and the obtained relationship is 
described by the equation 

a/h = 1.12 - 0.015 0 

which is valid for values of 0 smaller than 70 °. The 
theoretical justification of such a linear relationship is 
not presented.  Then,  depending on the kind of produced 
autocorrelat ion diagram, namely if one well defined 
cluster or two less defined clusters are obtained, the 
knowledge of ei ther the angle fl and the value of a/h or 
the two angles/31 and 132 and the side lengths a and c, one 
may estimate the value of the strain by using the graphs 
of Fig. 5 and Fig. 7 or 6. 



Deformation of lattices by point-to-point analysis 

"". ~" ".:.. . ( a )  

"° ° ""S" ° ° ' / .°  • °~ 
• " . ". .  ! ", ~ t .  
oO .o,,O ° " o ~l~o" 

• " . "  " :L . . •  •," " • .  - :  
• •,., •-•..". - . . .  ...'. • -" 

. . . .  "~ . . . . . . . . . . . . . . .  S t  

327 

t 

• -.......... ~-..,:,~o- :. : . . .  

' • " . • .  • , , , ' . %  - .  ° . "  - . ,  ° l  ' " • • " 

• . ' . . ' .  ,.~.. L.,/ . : ' .2...- ; . . - . . .  s~ 
. . . , "  ~" ,,...~'~,;.-. " . . .  

( e )  

Fig. 8. Autocorrelat ion diagram of a naturally deformed rock. The linear clusters are not random in character as in Fry 
(1979). In the first case (a)-(c),  one linear cluster is apparent.  In the enlarged inset the empty central zone is used to 
determine the parameters  (a, h,/3) of the interpretative triangle. One well defined linear cluster is apparent  with an angle 
of - 2 3  ° to the perpendicular to the S1 plane. By comparison with numerical values, a strain rate of 3' = 1.7 is estimated in 
a dextral simple-shear hypothesis. In the second case (d)-(f ) ,  two less defined linear clusters appear (d), interpretative 

scheme (e) helps for perception and schematic triangle (f) gives the parameters  (a, /3p, /32). 

APPLICATIONS TO ROCK DEFORMATION 

The method has been applied to deformed and non 
deformed natural rocks. Natural samples have been 
chosen from various types of deformed and non- 
deformed peridotites. Only deformed peridotites for 
which olivine petrofabrics show evidence of simple shear 
deformation are taken into account• For peridotites we 
proceed in the following way (Misseri & Vigneresse 
1982)• Olivine porphyroclasts are only considered within 
an area where the grain size is homogeneous. Thin 
sections are cut along the plane parallel to the lineation 
and perpendicular to the foliation plane (XZ plane)• 
Each crystal barycenter has been pointed out on a thin 
section magnifier (x 16). No intensity factor has been 
taken into account to include size or shape parameters of 
each grain, we only used binary signals• The autocorre- 
lated diagram is directly plotted by an appropriate dis- 
placement of the coordinates of the sampled points 
(Fig. 2). 

In the resulting autocorrelation diagram (Fig. 8a), the 
existence of only one type of linear clusters and a central 
empty zone is observed. By measuring the distance 
separating the linear clusters, and the half width of the 
central empty zone as well, the ratio a/h can be calcu- 
lated. The angle between the linear cluster and the 
perpendicular to the foliation plane is also determined. 
The foliation plane is defined with respect to the shear 
plane determined from subboundaries in olivine grains 
which also give the shear sense (Nicolas & Poirer 1976). 
All those parameters are used to characterize the aver- 
age minimum triangular mesh. An identical process may 
be followed for the determination of the angles/31 and/32 
in the case of two weakly defined linear clusters (Fig. 
8b). Those parameters allow a comparison with numeri- 
cally simulated lattice deformation. 

When applied to deformed peridotite, the autocorre- 
lation diagram (Fig. 8a) displays a well defined linear 
cluster oriented -23 ° to the perpendicular to the folia- 
tion plane (S1). At the centre of the diagram, an empty 
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zone is present, allowing the determination of the ratio 
a/h = 0.28. Comparison with the numerically simulated 
triangular mesh deformation through the templates 
(Figs. 5 and 7), the mean strain value applied to the 
sample is found about y = 1.7 in the case of simple 
shear. No check can be made about the value of strain 
obtained since no quantitative strain estimating method 
exists for such rocks. However, qualitative field observa- 
tions agree with a moderate strain value suffered by the 
region. 

The error is estimated to be about 20% and mainly 
depends on the starting mesh of the sample. Precision is 
a function of the point distribution. It depends strongly 
on the accuracy of measurement of the various paramet- 
ers and estimation of the distances between clusters. 

DISCUSSION 

The starting hypotheses which effectively limit the 
applicability of the method are now discussed. 

All the obtained autocorrelation diagrams have shown 
a linear cluster organization, though Fry (1979) and 
Ribeiro et al. (1983) have not observed such a process 
and rather obtained random diagrams. In fact these 
authors assumed an isotropic process such that the local 
pseudo-lattice is passive during deformation: the mar- 
kers are isotropically distributed and behave indepen- 
dently from the others; they do not materially interact, 
except from non overlapping, and they can reorientate. 
In the present approach an active lattice organized 
process is assumed since both spineis and olivine crystals 
are considered as more or less lattice organized. During 
deformation, if one crystal moves, the surrounding crys- 
tals have to accommodate the resulting displacement 
and react to such a process since they are connected 
within the lattice. 

The hypothesis of an anticluster process (production 
of a central empty zone), has been examined in relation 
to the size of the sample. If the total number of points 
entering the signal is increased, the resulting autocorre- 
lation diagram loses its well-defined cluster character. 
This may occur when the total number of points is 
greatly increased (over 100), leading to an autocorrela- 
tion diagram with over 10,000 points. The central empty 
zone is conserved and progressively spreads by Fry's 
(1979) process. This is due to large scale changes in the 
periodic character of the pseudo-lattice underlying the 
crystal distribution in the rocks. The average frequency 
is conserved, but slight rotations of the lattice may 
induce drastic changes in the phase component of the 
autocorrelated diagram. 

The total number of points influences whether anti- 
clusters or linear clusters are obtained. If too many 
points are taken into account, slight variations in the 
crystals lattice are perceived as departure from the 
original lattice and result in the widening of the fre- 
quency spectrum of the autocorrelated diagram. Con- 
versely, if not enough points are entered into the pro- 
cess, the resolution of the average shape of the mesh 

(central empty zone) is not good enough~ In fact the total 
number of points depends on the starting material and 
on the process which must be emphasized. Non-lattice 
organized-markers, such as ooliths or reduction spots, 
may be examined via the anticluster process since they 
behave independently during deformation. Grain repar- 
tition in rocks should be examined through its departure 
from lattice organized data. 

We ideally deal with lattice or pseudo-lattice 
organized data, though few regular lattices are encoun- 
tered in nature. Differences in grain sizes or small scale 
anisotropy are far more common. Even allowing a 20% 
departure for the points from their initial equilateral 
position did not substantially alter the results. Therefore 
we assume that a nearly equilateral (within 20% of 
variation for each side) pseudo-lattice mode is a good 
approximation to rocks provided no pronounced shape 
texture is present. The underlying existence of a pseudo- 
lattice organized rock has been tested through the same 
type of computation using non (or weakly) deformed 
natural rocks, namely peridotites from the Red Sea. 
When applying the method to these samples, linear 
clusters are observed yielding the conclusion that the 
starting material (natural rocks with equant grain size 
crystals) possessed a pseudo-lattice structure. This 
assumption may be verified through two-dimensional 
Fourier analysis of crystals in natural rocks. In such a 
case, the frequency spectrum should display a pro- 
nounced peak related to the average distance between 
grains, the half width of the peak depending upon the 
departure of the average grain size from the average 
distance between grains. Several authors have dealt with 
this problem, mainly in texture analysis (Whitten & 
Dacey 1975) or in statistical processes (Davis 1973). 

Since the simulation deals with lattice organized data, 
it involves continuity in the interaction process between 
adjacent meshes. Transposed to geological conditions 
this would imply that grain positions are only geometri- 
cally dependent. No physical consideration is made 
upon discontinuous processes within the lattice such as 
grain migration, grain boundary sliding, pressure solu- 
tion or diffusion creep. 

Only low to moderate deformed materials have been 
used. The higher the strain, the poorer is the resolution 
of strain quantification, because of the tangent depen- 
dent function in the strain law. Application to any rock 
is obvious since no physical or rheological properties of 
the material have been introduced in the treatment. 
However, for application to other rocks, it would, how- 
ever, be judicious to check the linear relationship 
between tan-~y and a/h against a possible dependence 
on rheoiogicai properties of the examined material. 

CONCLUSIONS 

An autocorrelation process applied to natural rocks 
and simulated deformed lattices results in linear clusters 
of points, each of them representing the barycentre of a 
crystal, the orientation of which depends upon the strain. 
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By computing the parameters  related to those clusters, 
graphs are produced which can be used to estimate the 
strain pattern,  The parameters  given by the autocorrela- 
tion diagram are the distance separating the linear clus- 
ters and the half width of the central empty zone; the 
values of the different linear clusters orientations com- 
plete the parameters  list. If the assumption is made that 
the starting material possesses a pseudo-lattice organiza- 
tion, which seems to be the case for rocks with equant  
grains, then the strain pattern obtained in the case of 
simple shear is estimated with a precision in the range of 
20%. This estimate holds when one well-defined direc- 
tion of clusters is obtained on the diagram provided 
deformation is not greater than a value of 3' = 3. The 
method is less precise when two less-defined clusters are 
present,  due to the more difficult estimation of their 
orientations. When the strain value is very high, then no 
precise estimate is possible. The method may also be 
used as complementary to the Fry (1979) and Ribeiro et 
al. (1983) methods in the case of cluster or anticluster 
distribution of markers in deformed rocks, since it may 
provide information on small-scale samples. 
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APPENDIX 

We deal with a hexagonal compact lattice. Each mesh may be 
viewed as a combination of six elementary triangular meshes. Thus, 
each point Xj of the elementary hexagon has coordinates (xj, y~), where 

X j =  a e x p ( i a j )  = a c o s a j  
a sin aj 

a is the lattice parameter and % = j(rr/6) + tk, with ~b the angle 
between the stacking plane and Ox the reference axis. Distances and 
azimuth of each internal line may be calculated as follows: 

d~k = ]IX i - Xk]l Oik = Arg {exp [i(a i - ak)]}. 

Two dimensional deformation can be simulated through a general 
matrix representation. In that case the general formula (Ramsay 1980) 
is 

D= ;(T b, 
+ A) d(1 + A) 

where a, b and c represent the terms of the homogeneous deformation 
gradient matrix. For the case of homogeneous plane strain with no 
volume change, this reduces to (a = 1, b = 0, A = 0). 

The distance between two points of the lattice is 

di~ = a2[ "~(sin ~i - sin ak) 2 + y{sin 2a i + sin 2ak - 2 sin (ai + ak) 
+ 2 - 2 cos (a i -  c,D}]. 

The angle of the line between two points and the shear plane is 

C O S  o t  I - -  C O S  Ot k 

Oik - sin aj - sin ak + 3' 


